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Abstract
We report a detailed ab initio study for body-centered-cubic (bcc) Ta within the framework of
the quasiharmonic approximation (QHA) to refine its thermal equation of state and
thermodynamic properties. Based on the excellent agreement of our calculated phonon
dispersion curve with experiment, the accurate thermal equations of state and thermodynamic
properties are well reproduced. The thermal equation of state (EOS) and EOS parameters are
considerably improved in our work compared with previous results by others. Furthermore, at
high temperatures, the excellent agreement of our obtained thermal expansion and Hugoniot
curves with experiments greatly verifies the validity of the quasiharmonic approximation at
higher temperatures. It is known that pressure suppresses the vibrations of atoms from their
equilibrium positions, i.e. the bondings among atoms are strengthened by pressure; for the same
temperature, anharmonicity becomes less important at high pressure. Thus the highest valid
temperature of the QHA can be reasonably extended to the larger range.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tantalum, a d-band metal, is a very useful pressure standard
and high technology material owing to its high chemical and
mechanical stability, large isothermal compressibility and high
melting point (3269 K). Because of its important position in
the field of material science and condensed matter science, it
has recently attracted tremendous experimental and theoretical
interest in its wide range of properties including the equation of
state (EOS) [1–4], the elastic [1, 5, 6], lattice dynamical [6–8]
and melting properties [7–13], etc. The phase diagram and
melting properties of Ta have greatly challenged the methods
of experiments and theories in the past decade [13].

As some of the very fundamental properties, the accurate
thermal equation of state (EOS) and thermodynamic properties
as a function of pressure and temperature can directly
provide valuable information for understanding the phase
diagram and dynamical response of materials under extreme

conditions. The thermal EOS is a measure of the relationship
between pressure, volume and temperature (P–V –T ). The
inclusion of temperature makes it more important than the
P–V equation of state. Even though many theoretical
calculations [1, 7, 8, 11–13] have been performed on its
EOS, it is important that the complete thermal EOS and
thermodynamic properties of Ta should be further refined
theoretically. Earlier, Cohen and Gülseren [1] applied the
particle-in-cell (PIC) model and obtained the thermal equation
of state, but their thermal expansion and heat capacity are
relatively far from experiments. The PIC model they used
has been questioned when it is applied at high pressure and
temperature [14]. So the accurate complete thermal equation
of state should be determined with more accurate theoretical
methods.

In this paper, we apply the quasiharmonic approximation
to the study of the lattice dynamical properties, the thermal
EOS and thermodynamic properties of Ta. Density functional
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perturbation theory (DFPT) is a well-established method for
calculating the vibrational properties from first principles in the
framework of the quasiharmonic approximation. The crystal
free energy is easily included by adding the phonon free energy
to the static energy through the standard density functional
(DFT) theory calculations. Including the part anharmonic
effects play by considering the volume dependence of phonon
frequencies gives access to thermal expansion, the thermal
EOS and thermodynamic properties.

At ambient conditions, Ta is a body-centered-cubic (bcc)
structure. The diamond-anvil cell (DAC) experiment [2]
indicated the bcc structure remains stable up to 174 GPa.
Furthermore shock wave (SW) experiments [15–17] and
theoretical calculations [11, 18] indicated that the bcc phase
continues to be stable under pressure up to 500 GPa. So, in this
work, we treat bcc as the unique phase of Ta at high pressure
and high temperature.

This paper is organized as follows. In section 2, we
give a detailed description of the method of first-principles
calculations and the technical details. The results and detailed
discussions are presented in section 3. Section 4 is a summary
of the results and a general conclusion.

2. Computational details

Within the quasiharmonic approach (QHA), the Helmholtz free
energy of metal at constant volume V and temperature T is
given by

F(V , T ) = Fel(V , T ) + Fzp(V , T ) + Fph(V , T ), (1)

where Fel(V , T ) is the electronic free energy directly obtained
from the total energy calculations, from which the electronic
free energy of the metal due to thermal electronic excitations
can be included using the standard methods of finite-
temperature DFT developed by Mermin [19]. Fel(V , T ) is
written as

Fel(V , T ) = Eel(V , T ) − T Sel(V , T ). (2)

The electronic entropy is given by

Sel(V , T ) = −2kB

∑

i

fi ln fi + (1 − fi ) ln(1 − fi ), (3)

where kB is Boltzmann’s constant and fi is the Fermi–Dirac
occupation number of orbit i .

The second term of equation (1) is the zero-point motion
energy given by Fzp = 1

2

∑
q, j h̄ω j (q, V , T ). The last term

is the phonon free energy arising from the lattice vibrations,
which is obtained from

Fph(V , T ) = kBT
∑

q, j

ln{1 − exp(−h̄ω j(q, V , T )/kBT )},
(4)

where ω j (q, V , T ) is the phonon frequency of the j th
mode at wavevector q in the Brillouin zone (BZ). The
phonon frequencies slightly depend on temperature due to
electronic excitations for transition metals, but the normal
quasiharmonic approach does not cause any serious problems

to the results [20, 21] and we neglected this dependence in this
work.

The vibrational frequencies of Ta were determined
at 18 volumes within the framework of the density
functional perturbation theory (DFPT) [22, 23]. Our
calculations were performed within the generalized gradient
approximation (GGA) to density functional theory, as
implemented in the QUANTUM-ESPRESSO package [23].
A nonlinear core correction to the exchange–correlation
energy function was introduced to generate a Vanderbilt
ultrasoft pseudopotential for Ta with the valence electrons’
configuration of 5s25p66s25d3. In addition, the pseudopotential
was generated with a scalar-relativistic calculation using
GGA according to the recipe of Perdew–Burke–Ernzerhof
(PBE) [24].

We made careful tests on k and q grids, the kinetic
energy cutoff and many other parameters to guarantee phonon
frequencies and free energies to be well converged. Dynamical
matrices were computed at 29 wave (q) vectors using an
8 × 8 × 8 q grid in the irreducible wedge of the Brillouin
zone. The kinetic energy cutoff Ecutoff was 60 Ryd and the
k grids used in both total energy and phonon calculations were
24 × 24 × 24 Monkhorst–Pack (MP) [25] meshes. The self-
consistent calculation was terminated when the total energy
difference in two successive loops was less than 10−12 Ryd.
A Fermi–Dirac smearing width of 0.01 Ryd was applied for
Brillouin zone integrations in phonon frequency calculations,
and in the calculations of static energy and thermal electronic
excitations we treated the smearing width of Fermi–Dirac as
the physical temperature of electrons. Different smearing
widths can all make the total energy to be well converged in
the large enough 24 × 24 × 24 MP k-meshes. The geometric
mean phonon frequency ω is defined by

ln ω = 1

Nq j

∑

q j

ln ωq j (5)

where ωq j is the phonon frequency of branch j at wavevector
q and Nq j is the number of branches times the total number of
q points in the sum. With the tested parameters, the geometric
mean phonon frequency ω was converged to 0.5 cm−1. Within
the framework of the density functional perturbation theory
(DFPT), a unit cell is used for calculating phonon dispersion
curves. Figure 1 shows the obtained dispersion curves at
zero pressure along several high-symmetry directions in the
BZ for both transverse (TA) and longitudinal (LA) acoustical
branches. One finds excellent agreement of the dispersion
curves with the neutron diffraction experiment [26]. We
repeated the phonon calculations for another 17 different
volumes, from which we obtained the phonon free energy
according to equation (4). Some of the dispersion curves
corresponding to volumes from 18.47 to 6.75 Å

3
are plotted

in figure 2, which shows the well-known phenomenon
in solids, i.e. the phonon frequencies increase as volume
decreases.
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Figure 1. Phonon dispersion curves of bcc Ta at zero pressure. The
solid circles with error bars are neutron diffraction experimental
data [26]. The first Brillouin zone of bcc Ta is plotted on the top. The
phonon density of states is also shown on the right-hand side.

Figure 2. Some of the obtained phonon dispersion curves at volumes
from 18.47 to 6.75 Å

3
. It is shown that the phonon frequencies

increase with increasing pressure. The solid circles with error bars
are neutron diffraction experimental data [26].

3. Results and discussions

3.1. Thermal equation of state

We obtained the Helmholtz free energy as a function of volume
V and temperature T from equation (1). Figure 3 shows the
Helmholtz free energy as a function of volume at temperatures
from 0 to 4000 K. The thermal EOS and its parameters are
then derived by fitting a fifth-order finite strain equation of
state (EOS) [27] to the free energy versus volume at each
temperature. The calculated isothermal compressional curves
are compared with experiments [2–4] in figure 4. From
figure 4, one notes the 0 K isotherm (including zero-point
motion) is almost the same as the 300 K one and this is due
to the small free energy contribution from the lattice vibrations
at 300 K, while, when the temperature goes from 300 to

Figure 3. The free energy versus volume curves of bcc Ta at
temperatures from 0 to 4000 K with 500 K intervals.

Figure 4. Isotherms of bcc Ta at different temperatures, compared
with room temperature experimental data [2–4].

Table 1. The fifth-order finite strain equation of state parameters.
Experimental data are from [3].

V0 (Å
3
) K0 (GPa) K ′

0

300 K 18.470 194.4 3.06
Expt. [3] 18.035 194 3.52

4000 K, the contribution of the phonon free energy becomes
larger and larger. Our 300 K isotherm deviates from DAC
experimental data with increasing pressure, but the agreement
with the shock-reduced isotherm [4] is reasonably good. We
show finite strain EOS fitting parameters, F0(T ), V0(T ) and
K0(T ) as functions of temperature in figure 5 and table 1. The
agreement of our results of the equilibrium volume V0 and bulk
modulus K0, and K ′

0 with experimental data is very good.
According to standard thermodynamic relations, the

pressure P is written as

P = −∂ F

∂V

∣∣∣∣
T

. (6)

3
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Figure 5. Fitted finite strain equation of state parameters: (a) F0(T ),
(b) V0(T ), (c) K0(T ) as functions of temperature.

From equations (1) and (6) we obtained

P = Pel + Pzp + Pph. (7)

Thermal pressure is induced by increasing the temperature at
constant volume, so we write thermal pressure as Pth = Pel +
Pph. As described above, here we neglected the dependences
of phonon frequencies on temperature, so Pzp is independent
of temperature. In figure 6, we plotted the deduced thermal
pressure as a function of volume and temperature. From
figure 6(a), one notes that the thermal pressure decreases with
increasing volume and shows the monotonic behavior. This
is different from the results of Cohen and Gülseren via the
particle-in-cell (PIC) model [1], which showed the thermal
pressures first decrease with decreasing volume, and then
present a minimum at a certain compression. As far as the
non-monotonic behavior of the thermal pressure is concerned,
Cohen and Gülseren attributed to the fit to the electronic
topological transition and thus the inflexibility in the fitted
Vinet equation of state. As for the temperature dependence
of thermal pressure (figure 6(b)), all the lines are quite linear,
with slopes varying from 0.0026 to 0.0167 GPa K−1. This is
also different from the results obtained by Cohen and Gülseren,
which indicate the lines have the same constant slope of
0.004 42 GPa K−1 for almost all volumes [1].

Our obtained thermal pressures of Ta are much larger than
the DAC values [10] which are generally not more than 2 GPa
over the wide range of pressure and temperature. The large
deviation of our results from the DAC experiment can be partly
attributed to the fact that the thermal pressure of the DAC
experiment [10] is calculated by assuming the thermal pressure
of room temperature is 0, while we calculated the thermal
pressure from 0 K and included the very important contribution
arising from electronic excitation [28, 29]. Our thermal
pressures of Ta are comparable with those of hexagonal-close-
packed (hcp) Fe which also has very large thermal pressure
at the similar high pressures and temperatures [29]. Except
for Fe, the experiments and calculations both indicated that
MgO [30, 31] and MgSiO3 [31, 32] also showed considerable
thermal pressure (more than 10 GPa at ∼2000 K and
equilibrium volume) at high P–T s.

b

Figure 6. The thermal pressure as a function of volume (a) and
temperature (b). (a) Lines correspond to different temperatures.
(b) Lines represent different volumes.

At equilibrium volume V0 (18.47 Å
3
), we separated the

thermal pressure into two parts, electronic and vibrational.
Figure 7 shows the electronic and vibrational thermal pressure
as a function of temperature at V0. The electronic thermal
pressure is very little at low temperature, but it is larger and
larger with increasing temperature and its weight increases
from 0% to around 12% of total thermal pressure when the
temperature goes up to 3000 K. Our calculated electronic
thermal pressure is also comparable with those of Au and
Pt obtained via the full-potential linear muffin-tin-orbital
(FP-LMTO) method [21] and that of hcp Fe from the
pseudopotential plane-wave method [28].

The Hugoniot curve is one of the fundamental properties
of materials, which can reflect the response of the material to
both pressure and temperature. We obtained Hugoniot curves
according to the Rankine–Hugoniot formula:

UH − U0 = 1
2 (PH + P0) (V0 − VH) (8)

where UH, PH and VH are the molar internal energy, pressure
and volume along the Hugoniot curve, respectively, and U0

and V0 are the molar internal energy and volume at pressure
P0 and room temperature. We obtained the pressure–volume

4
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Figure 7. Thermal pressure as a function of temperature at
V0 = 18.47 Å

3
. The electronic and lattice vibrational thermal

pressures are separated.

Figure 8. The volume–pressure and temperature–pressure (the inset)
relations on Hugoniot curves obtained from the QHA, in comparison
with experimental data [16, 33] and other calculations [17, 34].

and temperature–pressure relations along the Hugoniot curve
according to equation (8). Figure 8 shows the obtained
Hugoniot curve of P–V and P–T . Our obtained Hugoniot
curves are in excellent agreement with experiments [16, 33]
and other calculations. The agreement of our P–T curve with
other calculations is good below 150 GPa, but above 150 GPa
other theoretical results deviate [17, 34] from our calculations.

3.2. Thermodynamic properties

The volume thermal expansion coefficient αV can be derived
via

αV = 1

V

(
∂V

∂T

)

P

. (9)

In figure 9, we plotted the thermal expansion coefficient
as a function of P and T . Our zero-pressure results
accord excellently with experimental data [35] in the low

Figure 9. The thermal expansion coefficient as a function of (a)
temperature and (b) pressure. Our zero-pressure results are in
excellent agreement with experimental data [35]. (a) The thermal
expansion coefficient versus temperature at different pressures. (b)
The thermal expansion coefficient as a function of pressure at various
temperatures. Also shown are the zero-pressure results from [1].

temperature region (figure 9(a)). The zero-pressure results
of Cohen and Gülseren from the PIC model are also shown,
but the agreement of our results with experiment seems
better. Furthermore, our results reflect the continuous increase
of thermal expansion coefficient when T goes from 0 to
300 K, but the calculations of Cohen and Gülseren do
not. When the temperature is above 1700 K, our zero-
pressure thermal expansion coefficient gradually deviates from
experiments: this can be attributed to neglecting the other
part of anharmonicity in our present calculations (see the
discussions below). It is noted that the thermal expansion
coefficient drops rapidly and its temperature dependence
decreases with increasing pressure (figure 9(b)).

The linear thermal expansivity was obtained using (a −
a0)/a0, where a0 is the lattice constant at 0 K. In figure 10,
we plot the lattice constant and the linear thermal expansion
coefficient as a function of temperature and one notes the
agreement of the linear thermal expansion coefficient with
experiment [36] is very good.

5
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Figure 10. The lattice constant and linear thermal expansion
coefficient (inset) as a function of temperature. Experimental data are
from [36].

The specific heat at constant volume is defined by

CV =
(

∂U

∂T

)

V

(10)

where U is the internal energy of the system. CP is different
from CV due to the thermal expansion caused by anharmonic
effects. The relationship between CP and CV is determined by

CP − CV = α2
V (T )K0V T (11)

where αV is the volume thermal expansion coefficient, K0

the bulk modulus, V the volume and T temperature. In
figure 11, we plot CV as a function of temperature and pressure.
CV increases dramatically as pressure increases and finally
approaches a constant 3R (figure 11(a)). CV as a function
of pressure at fixed temperature is linear and the difference
between isotherms at temperatures beyond 2000 K is quite
small (figure 11(b)).

From equation (11), we obtained CP as a function
of temperature and pressure, which are compared with
experimental data [37] and the 0 GPa results by Cohen
and Gülseren [1] in figure 12. Our 0 GPa results agree
better with experiment and they are in good accordance
with experiments below 500 K but diverge from experiments
beyond 500 K (figure 12(a)). CP drops rapidly and its
temperature dependence decreases with increasing pressure
(figure 12(b)).

The thermodynamic Grüneisen parameter is a very
important parameter through which the thermal pressure is
related to the increase of thermal energy in the Mie–Grüneisen
equation of state and it is defined by

γ = V

(
∂ P

∂U

)

V

= αKT V

CV
, (12)

where U is the internal energy. Our calculated zero-pressure
300 K value of γ is 1.75, very close to the experimental zero-
pressure room temperature value of γ (1.65). As shown in
figure 13(a), γ shows very weak dependence on temperature

Figure 11. The specific heat capacity at constant volume as a
function of (a) temperature and (b) pressure. (a) CV as a function of
temperature at different pressures. (b) CV as a function of pressure at
various temperatures.

along the isobar; however, its pressure dependence is strong
(figure 13(b)) and it drops quickly as pressure increases. The
behavior of our calculated γ with temperature and pressure is
similar to that of Cohen and Gülseren [1] and that of Taioli et al
[8].

The mode Grüneisen parameter ω j (q) is defined by

γ j(q) = − V

ω j (q)

∂ω j(q)

∂V
, (13)

which expresses the volume dependence of the frequency of
the j th vibration mode of the lattice. The dispersion curves
of the mode Grüneisen parameters at zero pressure are shown
in figure 14. The mode Grüneisen parameters are positive
throughout the whole BZ for all three branches, indicating that
there is no anomalous negative expansion.

The isothermal bulk modulus KT can be obtained from

KT = 1

α

(
∂ P

∂T

)

V

. (14)

6
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(a)

(b)

Figure 12. CP as a function of (a) temperature and (b) pressure.
(a) The lines correspond to different pressures. Experimental data are
from [37]. Also shown are the 0 K results of Cohen and Gülseren.
(b) CP versus pressure at different temperatures.

The adiabatic bulk modulus KS correlates with KT via

KS − KT = −αγ KT T . (15)

Figures 15 and 16 show the isothermal and adiabatic
bulk modulus as a function of temperature and pressure,
respectively. The two moduli both decrease with increasing
temperature at fixed pressures and increase with increasing
pressure at different temperatures. The temperature
dependence of the two moduli becomes weaker and weaker
with increasing pressure.

Within the Debye approximation, the so-called Debye
frequency is determined from the condition of the total number
of modes to be equal to 3N for all acoustic branches:

3N =
∫ ωD

0
g(ω) dω, (16)

where N is the number of atoms in the unit cell and g(ω) is the
phonon density of states defined by

g(ω) =
∑

q, j

δ
[
ω − ω j(q)

]
. (17)

Figure 13. Variation of the Grüneisen parameter γ with
(a) temperature and (b) pressure. The temperature dependence is
moderate.

So, according to the Debye model all the values of q are
confined in a sphere with radius qD. Usually, the Debye
temperature is introduced as

�D = h̄ωD

kB
(18)

where h̄ is Planck’s constant and kB is Boltzmann’s constant.
From equation (17), we can obtain the Debye temperature at
0 K.

According to the Debye approximation, the Helmholtz
free energy at low temperature is

F = Estatic + RT

[
9

8

(
�D

T

)
+ 3 ln

(
1 − e−�D/T

) − D

(
�D

T

)]
,

(19)
D(�D/T ) is the Debye function written as

D

(
�D

T

)
= 3

(
T

�D

)3 ∫ �D/T

0

z3 dz

ez − 1
. (20)

We obtained �D(T ) at temperature T by solving equation (19).
Our results for the Debye temperature are displayed in
figure 17. The zero-pressure 300 K result (�D = 220 K) is

7
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Figure 14. Mode Grüneisen parameters at zero pressure. The three
lines (color online) correspond to three acoustic branches.

Figure 15. The adiabatic bulk modulus and isothermal bulk modulus
versus temperature at different pressures. The lines correspond to the
pressure from 0 to 300 GPa, and KS is somewhat larger than KT in
each set of data at the same pressure.

in very good agreement with the experimental datum (�D =
229 K) [38] derived from the standard entropy at 298 K
and 0 GPa. �D(T ) shows a significant increase as pressure
increases (decrease of volume). Firstly, �D(T ) drops with
increasing T up to ∼70 K at fixed volume; however, in the
temperature range from around 70 to 100 K, �D(T ) shows a
moderate increase. Finally, with a further increase of T (above
200 K), it shows a weak temperature dependence.

3.3. The effect of bonding on anharmonicity

In this work, we constrained our calculations to the
quasiharmonic approximation (QHA), and in the quite large
range of temperatures it is valid, i.e. when the temperature is
far from the melting point, part of the anharmonicity can be
neglected reasonably. However, in fact the QHA includes the
other part of anharmonicity by allowing phonon frequencies to
vary with crystal volume (figure 2), but it ignores the change
of electronic structure with increasing temperature and the
effects on the lattice dynamical properties. Furthermore, in

Figure 16. The isothermal bulk modulus and adiabatic bulk modulus
versus pressure at different temperatures. (a) The isothermal bulk
modulus variation with pressure at several temperatures. (b) The
variation of adiabatic bulk modulus with pressure at various
temperatures.

Figure 17. Debye temperature �D(T ) as a function of temperature at
different volumes. The filled star is experimental datum at 298 K and
1 atm from [38].

the quasiharmonic approach, the interactions among phonons
and the interactions between electrons and phonons are not
considered. Comparing our thermal expansion results with
experiment (figure 9), one sees that at ambient pressure the
valid range of the QHA for Ta is considerably larger, i.e. from

8
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0 to 1700 K. At ambient pressure and above 1700 K, the higher-
order anharmonicity must be considered completely. As far as
the calculation of anharmonicity of the solid and even the liquid
is concerned, Alfè et al have done plenty of excellent work
using the thermodynamic integration technique [8, 28, 39].
While, in this work, the obtained properties are reliable below
1700 K at ambient pressure, in the temperature range from
1700 K to melting point it is questionable, and beyond the
melting point the results are nonphysical. At high pressures,
pressure strengthens the bonding among atoms and lowers the
vibrational distances of atoms from their equilibrium positions,
so the valid range of the QHA can be extended to higher
temperature, e.g. the Hugoniot properties are well reproduced
up to 150 GPa and around 3000 K (figure 8 inset). The
Debye temperature of Ta at 0 GPa (18.47 Å

3
) is 220 K and the

highest valid temperature is about 7.7�D. Similar conclusions
have been drawn for thorium [40]. As shown in figure 17,
�D increases significantly as pressure increases (decrease of
volume) and the highest valid temperature also increases with
increasing pressure. By analyzing the Hugoniot curve and the
Debye temperature at high pressure and temperature, we note
the highest valid temperature may be still 6 or 7 times the
Debye temperature at high pressure.

4. Conclusion

We employed the density functional perturbation theory
(DFPT) to refine the lattice dynamical properties, thermal
equation of state and thermodynamic properties of bcc Ta.
The calculated phonon dispersion curve accords excellently
with experiment. We also well reproduced the thermal EOS
properties including isotherms, thermal pressure and Hugoniot
properties. Thermodynamic properties are very important to
extrapolate thermophysical properties to higher pressures and
temperatures. The specific heats CP and CV are considerably
improved in our work compared with those of Cohen and
Gülseren. The thermodynamic Grüneisen parameter as a
function of pressure and temperature was properly derived and
the Grüneisen parameter we obtained at 0 K and 0 GPa is
very close to the experimental zero-pressure room temperature
value. Note that the QHA only includes a part of anharmonicity
by allowing phonon frequencies to vary with crystal volume,
but it ignores the change of electronic structure with increasing
temperature and the effects on the lattice dynamical properties.
Therefore, when the temperature is very high (6 or 7 times the
Debye temperature) or close to the melting point, complete
anharmonic effects should be considered in the calculations.
However, the excellent agreement of our obtained thermal
expansion and Hugoniot curves with experiments greatly
verify the validity of the QHA at higher temperatures not close
to the melting point. As it is known that pressure strengthens
the bonding among atoms and then lowers the vibrational
distances of atoms from their equilibrium positions, so the
valid range of the QHA can be extended to higher temperature
at high pressure.
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Alfè D, Gillan M J and Price G D 2002 Phys. Rev. B 65 165118
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